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From Whitham’s ray-shock theory and the Brinkley-Kirkwood theory of shock 
propagation, a general theory for the propagation of asymmetrical blast waves of 
arbitrary shapes and strengths is developed in this paper. The general theory requires 
the simultaneous numerical solution of a set of partial differential equations and a pair 
of ordinary differential equations. If the shock shape is assumed to be known and 
remains invariant with time then the geometrical and the dynamical relationships in 
the theory can be decoupled. In  this case the solution simply requires the integration 
of the ordinary differential equations governing the dynamics of the blast motion since 
the geometry is already known. As a specific example the asymmetrical blast waves 
generated by the rupture of a pressurized ellipsoid are studied. The peak pressure is 
calculated by assuming that the shock surface remains ellipsoidal for all times and 
that the peak overpressure decay rate of the blast depends on the local curvature. For 
weak shocks, it is found that the degree of directionality is more pronounced than for 
stronger shocks. For weak blasts the present theory agrees with the solution based on 
acoustic theory. Experimental results on the shock trajectories for asymmetrical blast 
waves generated by exploding wires are found to agree with the present theory. 

1. Introduction 
It is well established that the blast wave from accidental chemical explosions is in 

general far from ideal. This is due to the fact that the energy release is fairly distributed 
temporally and spatially, and wave symmetry is the exception rather than the rule. 
Thus the conventional practice of damage assessment or risk evaluation based on the 
estimate of a TNT equivalent cannot yield realistic results. This fact has been reoog- 
nized universally, and the study of non-ideal blast waves has received considerable 
attention in recent years. A summary of these studies can be found in the recent review 
article by Strehlow & Baker (1975). In  most of the existing work, attention has been 
focused on the non-idealisms arising from the finite rate of energy deposition. The 
question of wave asymmetry has not been fully explored. This is an important aspect 
because the damage patterns of most accidental explosions all demonstrate a high 
degree of directionality. The present paper is concerned with the propagation of 
asymmetrical blast waves generated by non-spherical energy sources of finite size. 

The formalisms developed in previous studies of asymmetrical blast waves do not 
lend themselves readily to the description of the types of situation in accidental 
ohemical explosions. In general the blast wave generated in an accidental explosion is 
of moderate strength and the degree of wave asymmetry is quite large. The previous 
studies mostly dealt with very strong blast waves (i.e. M,+oo) with y+ 1 where the 
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‘snow-plough’ model is applicable (Laumbach & Probstein 1969) or with blasts with 
small deviations from sphericity in which asymmetry can be considered as a small 
perturbation to the motion of the spherical wave (Panarella & Savic 1968). Thus there 
arises the need for an appropriate theory for the highly asymmetrical blast wave of 
moderate strength that is generally associated with chemical explosions. 

The theory developed in this paper is based on Whitham’s (1957a, 1959) ‘ray- 
shock ’ theory. The ‘ray-shock ’ theory uses the instantaneous shock shapes and the 
orthogonal trajectories (i.e. rays) from the shock surface as a set of curvilinear GO- 

ordinates. Then from purely kinematic considerations, an equation (much like the 
eikonal equation in geometrical optics) for the ray direction as a function of the ray- 
tube area A and the shock Mach number 41, can be derived. To complete the formalism, 
an independent relationship for the shock Mach number and the ray-tube area (i.e. 
A(M,))  must be specified. Whitham used the so-called ‘Chester function’, which was 
derived originally by Chester (1954) and later by Chisnell(l957) and Whitham (1957b) 
on a different basis. The essence of Whitham’s theory is to treat the propagation of an 
arbitrarily shaped shock wave as that of a shock wave in a tube of variable area, the 
area variation being a function of the shock motion itself. Whitham’s theory is quite 
successful for shock diffraction problems, but cannot be applied directly to asym- 
metrical blast propagation. This is due to the inapplicability of the ‘Chester function’ 
for the description of blast decay. The Chester function relates the shock Mach 
number to the local area. Thus the mechanism for the decay of the shock is considered 
to be primarily due to area increase. For blast waves, the decay is due to entirely 
different mechanisms: the non-uniform flow structure behind the shock. Thus a planar 
blast wave decays even though there is no area variation. For Whitham’s ray-shock 
theory to be applicable to asymmetrical blasts, it  is clear that an appropriate expres- 
sion which contains the blast decay mechanisms must be used in place of the Chester 
function. In  the present formalism, this expression is developed from the Brinkley- 
Kirkwood (1947) theory. Thus in essence the present theory is simply Whitham’s 
original ray-shock theory but with the Chester function replaced by the appropriate 
expression developed from the Brinkley-Kirkwood theory of shock propagation so 8 s  

to  incorporate the correct blast decay mechanisms. 
Whitham’s theory is an approximate theory and represents considerable simplifica- 

tion when compared with the solution obtained via direct numerical integration of 
the unsteady three-dimensional conservation equations of gasdynamics. However, 
for arbitrary shock shapes, the solution using Whitham’s theory is by no means trivial 
and involves the solution of a partial differential equation of the hyperbolic type 
together with a set of ordinary differential equations from Brinkley & Kirkwood’s 
theory for the shock decay. Thus, in the present paper we shall restrict ourselves to  
shock shapes with rotational symmetry. By making the further assumption that the 
shock retains its shape a t  all times, the problem is considerably simplified in that, if 
only the shock motions along the axis of rotational symmetry and perpendicular to 
this axis are desired, the solution can readily be obtained from the simultaneous 
integration of six ordinary differential equations. The particular shock shape studied 
in this paper is the ellipsoid, and we shall consider the blast to be generated initially 
by the sudden rupture of a pressurized ellipsoidal container. The acoustic solution is 
also developed in this paper. For weak asymmetric blast waves, it  is found to agree 
extremely well with the more general theory developed from the Brinkley-Kirkwood 
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FIGURE 1 .  A sketch of a ray tube of an asymmetric shock wave. #(mi ,  t )  and S(zi+n,AN, t +  At) 
are the shock surfaces at times t and t + A t .  i is a unit vector normal to the shock surface. 
€2 = 22+y2. 

theory and Whitham’s ray-shock theory. The present theory also agrees with 
experimental results for asymmetrical blast waves generated by an exploding wire 
2 cm long. 

2. General theory 
We shall briefly rederive the working relationships of Whitham’s ray-shock theory. 

Let the shock shape be denoted by the equation S(x,t) = 0 (see figure I). By differen- 
tiating S with respect to t ,  we obtain 

aslat + vs  . axpt = 0. (2.1) 

The magnitude of the shock velocity (i.e. the velocity normal to the shock surface) 
is then given by 

Following Whitham, we write the shock surface as 

Hence (2.2) becomes 

where M, is the shock Mach number. 

S(z,t) = cot-a(zJ = 0. 

M, = &Jco = IIJVal, 

Defining a ‘ray’ as a trajectory perpendicular to the surface, we may write 

(2.3) 

i = Va/]Val = M,Va, (2.4) 
7-2 
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where i is the unit vector in the ray direction a t  any point. By considering a narrow 
ray tube whose end sections are part of two successive shock surfaces a(xi), it can be 
shown (Whitham 1957a, 1959) that 

V .  ( i / A )  = V .  (M,Va/A) = 0,  (2.5) 

where A is proportional to the cross-sectional area of the ray tube (measured as the 
area of the surface .(xi) = constant inside the tube at  that section). In  most cases A 
can be taken to represent the area of the ray tube directly. Equations (2.3) and (2.5) 
yield a pair of relationships for the three quantities M,, a(xi) and A .  If a third inde- 
pendent expression for the three quantities can be found, the formulation will then be 
complete. 

In the original work of Whitham the ‘Chester function’, which links the ray-tube 
area A with the shock Mach number Ms, is used. With the relation between the area 
and Mach number specified, the motion of a shock wave of given initial shape and 
Mach number distribution can be found using the two geometrical conditions (2.3) 
and (2.5). Examples of the use of the ray-shock theory can be found in the original 
papers of Whitham ( I  957 a, 1959). 

As mentioned previously, we need to seek a more appropriate expression for the 
dependence of the shock strength J4 on the local ray-tube area A for blast waves. 
In  a previous paper (Bach, Chiu & Lee 1975) the Brinkley-Kirkwood theory has been 
shown to provide a good description, particularly for moderate-strength and weak 
blast waves. However, the formulation given was based on spherical or cylindrical 
symmetry. In  terms of the non-dimensional overpressure Z (= AP,/Po), the propaga- 
tion of spherical blast waves was found to be described by the following differential 
equations (see equations 16 and 17 of Bach et u2. 1975): 

where ( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

v(Z) = 1 - 4 e-Z. ( 2 . 8 4  

Here the Brinkley-Kirkwood (B-K) energy integral W ( R )  is defined by Brinkley 
(1972) to be the work done by the pressure along the particle path r = r(R, t ) ,  i.e. 

W ( R )  = It,, Pu4nr2(R, t )  dt. 

Equations (2.6) and (2.7) provide a pair of ordinary differential equations for the 
propagation of spherical shock waves. If the initial conditions (Z(R,), W(R,)) or 
equivalently (Z(Ri) ,  [dZ/&R] Ri) are known, the subsequent motion of the shock can 
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be obtained by integrating (2.6) and (2.7). It is to be noted that in the Chester function 
only the initial shock strength Jlr, (or 2) need be specified. In  the B-K theory the 
initial rate of decay (i.e. [dZ/dR],J or equivalently the shock wave energy W(R,) 
must be specified in addition to the initial shock strength 2. This is due to the fact 
that in the B-K theory the attenuation of the shock wave is due not to the area change 
alone, but to the expansion gradient behind the shock as well. Thus the initial rate of 
decay dZ/dR of the shock wave must also be specified. For a more detailed discussion 
of the B-K theory and the derivation of the required relationships, the recent paper 
of Bach et aE. (1975) should be consulted. 

Thus far, the B-K theory has been formulated only on the basis of spherical, 
cylindrical or planar symmetry. In  order that the results be valid for an arbitrary 
shock tube with given cross-sectional area A(R),  (2.6) and (2.7) have to be modified. 
Careful examination of the B-K formalism in an arbitrary shock tube shows that all 
we have to do is (i) to replace 4nR2 by A(R),  (ii) to replace 2/R by A-ldAIdR and 
(iii) to introduce L = W(R)/P,A(R). 

With these changes (2.6) and (2.7) become 

(2.10) 

d L  F3(Z) L dA 
dR- y - 1  A d R ‘  

(2.11) 

(2.12) 

It is important to note that for asymmetrical shock waves L is a well-defined quantity 
a t  any point but W is not. Hence the transformation from W to L in developing 
a theory of asymmetrical blast waves is essential. 

The formulation of the present theory is now complete. The two geometrical relation- 
ships (2.3) and (2.5) are identical to those in Whitham’s original theory. However, 
for the dynamical condition, the Chester function is now replaced by the two ordinary 
differential equations (2.11) and (2.12). With theinitial shockshapeandshockstrength 
distribution as well as the initial rate of decay of the shock (or equivalently the shock 
wave energy) specified, (2.3), (2.5), (2.11) and (2.12) must be solved simultaneously to 
achieve the description of the subsequent motion of the blast wave. 

3. Ellipsoidal blast waves 
In the general theory given in the previous section, the motion of the blast wave is 

described by the pair of ordinary differential equations derived from the Brinkley- 
Kirkwood theory. However, in these equations the area variation in the direction of 
motion (i.e. dA/dR) must be known. It is the geometrical relationships from Whitham’s 
ray-shock theory that give this area variation as a function of the shock strength Ms. 
Thus the geometrical and the dynamical conditions are coupled through this area 
variation (or the shock shape) and thus (2.3), (2.5), (2.11) and (2.12) must be solved 
simultaneously. This is not an easy task in general, for the geometrical conditions 
lead to partial differential equations of the hyperbolic type. The solution of these 
equations must be achieved numerically using, for example, the method of charac- 
teristics, as in the solution of the ordinary conservation equations in compressible 
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flow. However, if we could decouple the geometrical from the dynamical conditions, 
then we should simply have a set of ordinary differential equations to integrate for the 
motion of the shock wave. Decoupling requires the area variation along the ray tube 
to be specified a priori. In  other words, if the shape of the blast wave can be specified 
then the solution of the problem is greatly simplified. 

From experimental observation we note that asymmetrical blasts with rotational 
symmetry tend to retain their shapes with time. In other words, if the initial shape of 
the shock wave is ellipsoidal, then its shapes at  later times will not deviate much from 
an ellipsoid. We shall consider in this paper the motion of an ellipsoidal blast wave 
under the assumption that the shape remains ellipsoidal at all times. This is not too 
severe a restriction since the ratio of the major to the minor axis (i.e. alb) is allowed to 
change with time according to their decay rate. Thus the degree of ellipticity can vary 
with time, and the ratio alb approaching unity in the asymptotic limit of a spherical 
wave is in accord with experimental observations. 

For an ellipsoidal shock surface, we have (see figure 1)  

z2/a2 + c2/b2 = 1, (3.1) 

where z and E are the components along the z axis (the axis of rotational symmetry) 
and in the x, y plane respectively. r has already been used to denote direction along 
a ray tube. In what follows, we shall use ‘major axis’ to denote the z axis and ‘minor 
axis’ to denote the x, y plane. From (2.5), we can write 

i i 1 
A A2 A 

V.-= -- .VA+-V. i  = 0, 

and since V A  and i are both normal to the shock surface and r is in the direction of 
a ray, lVAl = dA/dr and the above equation gives 

A-ldAldr = V . i .  (3.2) 

From (3.1), the unit vector i can be written as 

and if the above is used to evaluate the divergence of i (3.2) becomes 

(3.3) 

(3.4) 

By substituting the above into (2.11) and (2.12)) the motion of the shock at  any given 
location on the surface of the ellipsoid ( E ,  z) can be obtained. Of particular interest is 
the motion along the major axis 6 = 0, z = a and along the minor axis c = b, z = 0 .  
Specializing (3.4) to these two locations, we get 

A-I dA/da = 2a/b2, (3.5) 

(3.6) A-l dA/db = l / b  + b/a2. 

If the above are substituted into (2.11) and (2.12) the resultant set of ordinary 
differential equations is 

da/dt = Msaco, (3.7) 
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where 

dbldt = MsbCo, (3.10) 

M: = I + -  Y + b .  
2Y 

(3.11) 

(3.12) 

The subscripts a and b in the above equations denote the conditions along the major 
(2) axis and the minor (z,y plane) axis, respectively. Once the initial conditions 
(Za, z b ,  La, Lb) at t = t i ,  where a = ai and b = bi, have been specified, the subsequent 
propagation of the blast wave can be obtained by integrating the set of equations 
(3.7 )-( 3.12) simultaneously. 

We shall consider the blast wave to be generated by the rupture of a pressurized 
ellipsoid with initial overpressure AP,. Following Brode’s (1955) definition, the energy 
of the ellipsoid is written as 

= +raib:Ae/ (y-  1 ) ,  (3.13) 

where ai and bi denote the major and minor axes of the pressurized ellipsoid prior to 
rupture. For the initial conditions, we assume that 

La = Lb = K/P,A,  (3.14)  

where A is the surface area of the ellipsoid. Since R, = (H{/P,)) is defined to be the 
explosion length, La and Lb are both equal to RgIA, which obviously has the dimensions 
of length. The initial shock strength Z can be found from the one-dimensional shock- 
tube relationship for any given value of the overpressure APi. Again we shall assume 
that M,, = M,, or in otherwords, that the initial shock strength distribution is uniform 
for the ellipsoid. 

It should be noted that an alternative method can be used to initiate the integration 
of (3.7)-(3.12).  For a given Ae, the initial shock strength can be obtained from one- 
dimensional shock-tube theory as described previously. However, the initial rate of 
decay of the shock wave can be obtained by performing a perturbation analysis of the 
one-dimensional shock-tube flow to account for the geometrical effects. In  this manner 
the initial rate of decay of the shock wave will not be identical along the major and the 
minor axes. Thus it appears that this method of determining the initial conditions is 
more exact. However, it was shown in our earlier studies on the rupture of pressurized 
spheres, where both methods of solution were tried, that the former method of using 
the energy to start the numerical integration is superior. The nature of the B-K theory 
is such that the solution is not too sensitive to the value of the energy. Thus the assump- 
tion that La = Lb initially is expected to be quite good. Also, if the initial rate of decay 
is specified, extreme accuracy must be used, otherwise the integration is unstable. 
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The results obtained using both methods for the initial conditions agree with each other 
for the spherical cases analysed previously. Hence, in the present work the initial 
energy is used to start the numerical integration of (3.7)-(3.12). 

4. Limiting solution for weak explosions 
If the overpressure ratio Ae/Po << 1, then the blast wave generated upon explosion 

of the ellipsoid (or any arbitrary convex pressurized vessel) can be described by acoustic 
theory. The restriction to convex vessels is made to avoid the complexity of caustio 
formation or focusing of the wave front. Perhaps the simplest approach is first to 
construct the solution from a known solution using the principle of supposition. Non- 
linear effects are accounted for at  the end by using Whitham’s (1956) weak-shock 
theory or on the basis of Gottlieb’s solution (Gottlieb & Glass 1974; Gottlieb 1974). 
Specifically, the acoustic N-wave radiation from the rupture of a pressurized sphere is 
well known. Thus for an arbitrarily shaped pressurized vessel, we can consider the 
vessel to be made up of a large number of elementary pressurized spheres. The pressure 
field upon rupture of the vessel can then be obtained by summing the individual 
contributions from the elementary spheres. 

The overpressure field a t  time t a t  the origin r = 0 due to the rupture at  t = 0 of 
a pressurized sphere of overpressure APi and radius Ri situated at  r can be written as 

(4.1) 
(see figure 2a) AP(0, t )  = (A</2r) (r - cot )  S,  

where S = 1 for Ir-cotl < Ri and S = 0 otherwise (Landau & Lifshitz 1966, p. 267). 
For a volume dv of an arbitrarily shaped pressurized vessel with overpressure A&, the 
number of elementary pressurized spheres of radius Ri will be dv/(+nR:). Thus the 
pressure field at  r = 0 due to the rupture of such a vessel is given by the following 
integral : 

The volume dv can be written as A(r)  dr, and we note that, at  any instant of time t ,  
only a thin slice (thickness 2Ri) of the pressurized vessel contributes to the pressure 
field a t  the origin r = 0 (figure 2 b ) .  By expanding A(r )  in a Taylor series about r = cot 
and by retaining only the first-order term in that series, (4.2) becomes simply 

Obviously, [dA/dr],=,  depends on the shape of the exploding vessel itself. The peak 
overpressure can easily be obtained from (4.3) by taking r to be the shortest distance 
from the field point to the vessel. For a spherical vessel of radius R, whose centre is 
at  ro + R, the function A (r )  is given by 

A(r)  = (2nr,R/r) (r - ro) 

for r - ro  << r,. Substituting the above into (4.3) yields 

AP(0,t = ro/co) = AeR/2(ro+R),  (4.4) 

which is exactly the peak of the N-wave at a field point ro + R from the explosion of 
a pressurized sphere of radius R and overpressure AP,. 
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T = rica 

A P  (0,t) 

20 1 

FIGURE 2. (a)  The overpressure N-wave due to the rupture of a pressurized sphere. (b) The 
overpressure waves of each elementary sphere (radius R,) centred in the thin slice contributing 
towards the overpressure wave at  the field point at  time t .  

We now apply (4.3) to evaluate the peak overpressure along the major and minor 
axes of an exploding pressurized ellipsoid. Along the major axis, we note that the end 
of the ellipsoid is a spherical cap with radius R = b:/a,, where a, and b, are the major 
and minor axes of the ellipsoid, respectively. Thus (4.4) gives the peak overpressure 
along the major ( z )  axis as 

A& bflai 
AP(z  = a)  = - (4.5) 2 a - ai + b&’ 

where a is the distance of the field point from the centre of the ellipsoid. Similarly, the 
peak overpressure along the minor axis (2, y plane) is found to be 

where b is the distance of the field point from the centre of the ellipsoid. From (4.5) 
and (4.6) we note that for ai = b, = R, when the ellipsoid becomes a sphere, (4.5) and 
(4.6) both reduce to the equation (4.4) for the spherical case. The peak overpressure 
of the wave at the instant of rupture of the sphere or ellipsoid is found to be iAP,,  
which corresponds to the value obtained in the limit of very small overpressure ratio 
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from the one-dimensional shock-tube formula. In  the far field, where a or b is large 
compared with ai and bi, (4.5) and (4.6) yield 

':, AP(e  = b)  = -a,. APi 
2b 

AP(z  = a)  = -- 
2a ai (4.7) 

Even when a = b, the ratio of these overpressures does not approach unity; instead, 
it approaches (bi/ai)2 as a = b +w. Thus we see that the initial degree of asymmetry 
is retained even in the far field although the wave shape approaches sphericity (i.e. 
(ai+cot)/(b,+cot)+ 1 as t-tw). From (4.6), we note that for a,+w (bi being finite) 

A P ( B  = b)  21 +Api(bi/b)*, (4.8) 

i.e. we recover the result for cylindrical waves, where the peak decays like b 4 .  From 
(4.5), we note that for bi +w (ai being finite) 

AP(z  = a)  N & A e ,  (4.9) 

which is the planar-wave result, in which the wave amplitude remains invariant. 
Thus the solution given by (4.5) and (4.6) yields the appropriate results in the various 
limiting cases. 

It should be pointed out that (4.5) and (4.6) are based on linear acoustic theory, in 
which superposition holds. These expressions are not accurate in the far field, when 
wave distortion can no longer be ignored. In this paper, we shall use the technique of 
Landau (1948), Whitham (1956) and Gottlieb (1974) to account for nonlinear effects 
in the far field. According to Gottlieb the peak overpressure from the explosion of 
a pressurized sphere of overpressure Api and radius Ri is given by 

A P . R .  ( y +  1 A< r ) - 1  
A P ( r )  = 3 1+--1n- . 

2r 4~ '0 Ri 
(4.10) 

We recall that in the linear acoustic theory Ri is equal to the length of the positive 
phase of the pressure wave while r is the radius of curvature of the shock surface. 
Equation (4.10) implies that the decay law is completely determined by local properties 
of the pressure pulse like the peak overpressure, the pulse length and the curvature of 
the shock surface. Hence extension from a spherical explosion to an asymmetrical 
explosion is trivial. Along the major axis, the pulse length is closed to ai. Hence the 
modified overpressure should be 

Api bt/ai 
AP(z  = a )  = - 

2 a-ai+b:/ai 

Along the minor axis we have 

AP(€ = b) = - at/b )*( 1+--ln- y + l  A< b)-4 , 
*Y Po bi 

(4.11) 

(4.12) 

5. Results and discussion 
All numerical results are based on a perfect gas with y = 1.4. The shock over- 

pressure ratio AP,/Po is plotted vs. shock position r/Ro (r  = a for the major axis and 
r = b for the minor axis in the x, y plane) for various initial overpressures AP, of the 
ellipsoid for two typical ellipticities a& = 2 and 0.5, in figures 3 (a )  and ( b )  respectively. 
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FIGURE 3. Shock overpressure AP/P ,  us. distance r /R,  for ellipsoidal shock waves due to the 
rupture of (a )  a prolate pressurized ellipsoid with ai/bi  = 2 and ( b )  an oblate pressurized ellipsoid 
with ai/bi  = 0.5. The spherical result is also shown for comparison. The initial pressure ratio 
PIP, takes the values 5, 1.5 and 1.1. -a-,  major axis; - , minor axis; ---, spherical; 0 ,  
acoustic theory. 
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APlIPO 
FIGURE 4. A plot of the ratio of the overpressure along the major axis to that along the 
minor axis in the far field (at 100 explosion lengths) as function of the initial overpressure. 

R,, is the explosion length. For each case, the corresponding curve for the spherical 
blast of the same total energy and overpressure ratio is shown for comparison. For 
the case A4/Po = 0.1, of a weak initial overpressure ratio, the limiting solutions from 
the acoustic theory of Q 4 are also plotted. 

In figure 3(a) ,  where uJbi = 2, we note that the decay of the blast wave along the 
major axis is much more rapid than the decay for the corresponding spherical case or 
the decay along the minor axis in the central x, y plane. This is due to the large curva- 
ture of the shock wave along the z axis. As a result of the slower decay rate, the blast 
overpressure along the minor axis quickly becomes greater than that along the major 
axis. This degree of directionality is more severe for initially weaker blast waves than 
for stronger shocks. 

Similar results obtained for the case ailbi = 0-5 are shown in figure 3(b). Here the 
blast decays much more rapidly along the minor axis than along the major axis since 
the curvature along the minor axis (the x, y plane) is greater than that along the major 
axis. Again the degree of directionality is less for stronger shocks, and the shock decay 
approaches the spherical case in the far field when alb + 1. In  both figure 3 (a )  and 
figure 3 (b), we note that the results for the peak overpressure from the B-K theory 
agree extremely well with those from the acoustic theory when the initial overpressure 
is small and the blast wave generated is weak. 

In  figure 4 we show quantitatively the ratio of the overpressure along the major 
axis (z  axis) to that along the minor axis (2, y plane) in the far field (at one hundred 
explosive lengths) as function of the initial overpressure. In  figure 5 the peak over- 
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FIGURE 5. The peak overpressure along the major and the minor axis a t  r = lOOR,, 
plotted against a,/bi ,  the degree of ellipticity of the exploding ellipsoid. 

pressures along the major and the minor axes at r = lOOR, are plotted against a&, 
the degree of ellipticity of the exploding ellipsoidal vessel. The solid curves are results 
of the Brinkley-Kirkwood theory and Whitham’s ray-shock theory. The dashed 
curves were obtained by using the modified acoustic theory. Agreement is very good for 
0.5 < ai/bi < 2.  We thus conclude that the present theory with the assumption that 
the shock surface is ellipsoidal at  all times is good only in the range 0.5 < ai/bi c 2. 
For highly asymmetric situations, the shock shape will not remain ellipsoidal all the 
time. Such problems can be solved only numerically. 

An experiment was performed to verify the present theory. The asymmetrical blast 
wave was generated by exploding a 2cm long fine copper wire with a high voltage 
capacitor energy source. The shock shapes a t  various times were recorded via high- 
speed framing schlieren photography. A typical result is shown in figure 6. Prom the 
schlieren photographs, the shock trajectories along the major axis and the minor axis 
were obtained. As can be observed, the shock shapes are not ellipsoidal. However, we 
assumed them to be ellipsoidal and used the present theory to obtain the shock 
trajectories for comparison with the experimental results. In  the experimental situa- 
tion, the blast is not generated by the rupture of a pressurized ellipsoid. Hence we 
usedadifferent set ofinitial conditions to start thenumericalintegrationof (3.7)-(3.12). 
From the experimental shock trajectories, we obtained the shock strength and its 
rate of decay. Thus, choosing an arbitrary time as the initial instant at which the 
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Major axis 

FIGURE 6 .  The shock shapes a t  various times after the explosion of a 2 cm long 
copper wire as recorded by schlieren photography. 

shock shape, Mach number and rate of shock decay were obtained from experiments, 
(3.7)-(3.12) were integrated numerically for the subsequent motion of the blast. 
A comparison of the shock trajectories along the major and minor axes is given in 
figure 7. It is to be noted that the agreement is quite good in spite of the assumption 
that the shock shape is ellipsoidal at all times, which is not the case experimentally. 
Thus it appears that this assumption is not too critical, and it is felt that an asym- 
metrical blast of arbitrary rotational symmetry can often be described quite well by 
the simple theory developed in this paper. 

6. Conclusions 
The present theory for the propagation of asymmetric blast waves is based on the 

Brinkley-Kirkwood theory and Whitham’s ray-shock theory. Although it is an 
approximate theory, the task involved in obtaining a solution for the motion of an 
arbitrarily shaped blast wave is by no means trivial. However, if the shock shapes at all 
times can be specified, then the dynamics of the asymmetrical blast can readily be 
determined from the numerical integration of a pair of ordinary differential equations. 
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FIGURE 7. A comparison of the present theory with experimental results 

obtained from figure 6. -, theory; 0, experiment. 

It should be noted that the simplification results from the decoupling of the geometrical 
from the dynamical relationships, and this is achieved once the shock shape or how 
it changes with time is known, or assumed. As a matter of fact, we do not require in this 
paper that the shock shapes be similar to achieve this decoupling. We merely demand 
that the shock shape remains ellipsoidal for all times, and the degree of ellipticity may 
change with time. Thus this assumption is not too restrictive and is found to be 
extremely good when the degree of ellipticity is within the range 0.5 < ai/bi < 2. 

Of particular importance in the present study is the demonstration that, for 
the same degree of initial asymmetry, a weaker blast has a more severe degree 
of directionality in the far field than a stronger blast. Thus in accidental explosions, 
where the blast waves are in general weak, asymmetry is an important factor and 
should be taken into consideration in the assessment of blast damage and risk 
evaluation. 

A modified acoustic theory is also given for an elliptical explosion with nonlinear 
wave distortion taken into account. For weak shock waves, this acoustic theory agrees 
extremely well with the more general theory developed from the Brinkley-Kirkwood 
theory. Experimental results for asymmetrical blast waves generated by exploding 
wires are found to agree quite well with the present theory. 

We have also investigated the static and the dynamic impulses of the asymmetrical 
blast wave by making use of the original assumptions for the pressure-time integrals 
as given in the paper of Brinkley & Kirkwood. Unfortunately, the results do not 
approach the proper limits for weak shocks as predicted by the acoustic theory. In  
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view of all the simplifying assumptions involved, we conclude that the Brinkley- 
Kirkwood theory, though it gives excellent results for the peak overpressure and the 
shock trajectories, fails to yield a quantitative description of the flow profile. Further 
improvement is necessary. 

This work was supported by AFOSR Grant 72-2387C and NRC Grants A3347 
and A7091. 
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